Int. J. Solids Structures, 1968, Vol. 4, pp. 777 to 785. Pergamon Press. Printed in Great Britain

PRESSURE VESSELS WITH EDGE ZONE YIELDING*

C. R. STEELE

Department of Aeronautics and Astronautics, Stanford University

Abstract—Solutions are obtained for the one-time pressurization and heating of a thin shell of revolution com-
posed of a nonlinear elastic material and clamped to a rigid ring. The usual “edge effect” approximate equations
are used. A bilinear moment—curvature relation is considered which indicates that, before the collapse pressure
indicated by limit analysis is reached, significant yielding occurs in a narrow edge zone, within the usual “edge
zone”, for materials with low strain hardening. With the assumption that such an edge zone generally occurs,
a simple approximate solution is obtained for any prescribed moment—curvature relation, such as that obtained
for a real material after the interaction with the direct stress is taken into consideration. The analysis should be
of utility for vessels made of materials of moderate ductility for which failure occurs at the edge region at a
pressure less than the collapse pressure.

INTRODUCTION

THE typical pressure vessel is a thin-walled shell of revolution. It is quite well-known that
the stress in such a vessel is essentially given by the “membrane” solution except in the
vicinities of stiffening rings, or any other geometric discontinuity, where additional stresses
occur due to the “‘edge effect” solutions. See, for instance, the discussion of the linear theory
by Gol'denveizer [1] and Fliigge [2]. However, for a minimum weight vessel made of a
ductile material to be loaded only one time, the plastic limit analysis procedure, discussed by
Hodge [3] and applied to a more complex problem by Ruiz and Chukwujekwu [4], is quite
successful. Limit analysis indicates that for short cylinders, for instance, end rings provide
a significant stiffening effect. However, for moderately long cylinders collapse occurs when
the membrane stress is in negligible excess of the yield stress [3]. Instead of a rigid—perfectly
plastic material behavior, Constantino et al. [5] use a rigid—linear strain hardening material
model. They also find the result that plastic collapse occurs when the membrane stress is
equal to or in excess of, for short cylinders, the yield stress. However, the linear elastic
solution indicates that the discontinuity stresses, in some cases, may far exceed the mem-
brane stress. Thus, except for very ductile materials, failure can occur at the discontinuity
regions while the main portion of the shell is well below the yield stress.

The objective of the present investigation is a simple failure estimate for pressure vessels
made of moderately ductile materials. First, the essential features of the well-known linear
elastic analysis are given for a pressure vessel clamped to a rigid ring. Since the linear
solution indicates that the edge bending stress is dominant, a bilinear relation between
meridional bending moment and curvature change is assumed. A solution is found which
gives a small region of yielding near the edge characterized by high curvature but essentially
constant displacement. The assumption that a similar yield zone would generally occur
enables a simple solution to be obtained for the actual post yielding moment—curvature
relation for a given material.

* This investigation was partially supported by the Office of Naval Research under Contract N00014-67A-
0112-003.
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In this paper only the material nonlinearity is considered. However, it appears that
for a class of shell problems, including the present one, that all the complicating effects
of material and geometric nonlinearities, as well as shear deformation, are significant in a
narrow zone within the edge zone of the linear bending effect. This effect of the geometric
nonlinearity was discussed by Reissner [6]. Thus a direct analysis of a shell theory in-
cluding all these effects, for instance that given by Green ez al. [7], would appear to be
fruitful. The narrowness of the zone, and hence nearly constant displacement despite a
large curvature change, would provide the simplifying feature for a suitable perturbation
analysis. Although such a formal perturbation expansion would be logically satisfying,
the details tend to obscure the basic ideas involved and, therefore, will be omitted from
this paper.

LINEAR SOLUTION

The pressurized and heated shell of revolution indicated in Fig. 1 has the membrane
solution

NG = pra/2 (1a)
& = No@=ryfry) (1b)

where the familiar notation of [2] is used. The radial deflection of the membrane solution
is

W = 3521[2-9—\;] +raT (1c)

and the rotation is y™ = O(h™/r). The raT term gives the expansion due to the known
temperature distribution. For simplicity the case of a rigid ring clamped to the shell edge
is considered, for which the boundary conditions for the “‘edge effect” solution are

w = —h"/sin @

= —x"

i

FiG. 1. Pressure vessel attached to ring.
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The equation for the edge effect solution, which are obtained from the rigorous
equations ([2], p. 359) with the assumption that only the highest derivative terms are
significant, may be reduced to

m' +4n = 0
2

m___"n

where primes denote differentiation with respect to

s
{=[3(1- Vz)]*‘(*r'z‘t‘);

in which s is the meridional arclength. The equation (2) is equivalent to the equation (8.6)
on page 488 of [1]. The quantities m and n are the dimensionless moment and displacement

m=M,/M,
2
n= W(:_E) E3/[12(1 —=v*)M,]

where M, for this section is some arbitrarily selected value of the moment, but in
anticipation of the next section will be identified as the yield moment of the material.
The solution of (2) is

n=¢e {Ascos{+dgsin{]
where the constants are determined from the edge conditions
As =10) = —p/2
il L )
p= (D(—) E/[12(1 ~vH)M ]

ds
As = As{1+0[(t/n*1}
~ As
in which the parameter p is introduced, which gives the edge bending stress

+ * N7
won ol e (2] )

1—v 1—v t ry

The ratio of maximum bending stress to meridional membrane stress is (for v = 0-3)

Opp _ { 127 for sphere (ry/ry = 1)

6,0 |31 for cone or cylinder (r; = )

which gives the ratio of maximum edge stress to maximum membrane stress

6° | 227 for sphere
205 for cone or cylinder.

=
Thus, for a shell wall thick enough for the edge stress to be just equal to the yield stress,
the interior membrane stress will be substantially less than yield. Since most of the shell
is at the membrane stress, such a design may seem unreasonably conservative. The situation

is alleviated by a variable wall thickness ; but in some situations this could present worse
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manufacturing problems. Flexibility of the ring somewhat reduces the edge stress but
does not change the features of the problem. Therefore a solution for the shell clamped
to a rigid ring with pressure in excess of that which produces incipient yielding is obtained
in the following section.

SOLUTION FOR EDGE YIELD ZONE

The linear solution indicates that, as the pressure is increased, the meridional stress
at the edge first reaches the yield stress. Furthermore, since N, & Nj, vNj £ Ny £ Ng,
M, =~ vM,, itis the relation between M, and the curvature change that is most significantly
affected by material yielding. Thus the usual linear constitutive relations are assumed
except for the moment—curvature relation.

Bilinear moment—curvature relation
First is considered the bilinear relation

{ n” for |n"l < 1
m =

— 4y 1 4 (3)
l+a~%n"—1) forp”" > 1

which is shown in Fig. 2. The quantity M, is now identified as the yield moment. Then p
is the ratio of pressure to the pressure causing incipient yield

p = p/py.

0 i 7"
FIG. 2. Moment—curvature relation.

Since, as seen from, for instance, the discussion of [1], only the derivative of M, is
significant for the edge effect equations which now reduce to

o 4fory” > 1

nmr X +471 = 0 (4)
1 forjp’l <1

Solutions for ” > 1 are of the form

n = exp((—1)*2*a(].

The solution will be sought for which #” > 1 in a zone near the edge 0 < s < L, and
(7"l < 1for s > L. Such a solution would be

cosh a(l — D[4, cos { — 1)+ A, sin o({ —1)]
n =< +sinha((—D[Ascosa({ —D+Assina({—1)] for0 (<! (5)
e E D Ascos({—D+Agsin((—=0D] for{ =1
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where | = {(L) and where the A4; are constants to be determined from the conditions at
the edge on displacement and rotation

—n(0) = p/2
n'(0) = Op/r’) = 0

and the continuity and yield conditions at { = I Since displacement and slope are con-
tinuous, # and dn/d{ are continuous, but for continuity of the transverse shear

n"(1") = o~ (7).
The yield condition is
M)y =n(") =1
The condition at { = I give
Ay = As
a?d, = —Ag=1%
Ay +A3) = Ag— A5
0" YAy~ As) = As+ Ag.
Then the conditions at { = 0 give
—244[Cec—3{a—a™ )Cs+L1(a+a™)Sc]
= p+Hoa+a )Cs—$(@—a )Sc+a2Ss (6a)
245[—o"'Cc+Cs—Sc+aSs] = o~ 'Cc+a 2Cs+a~ 2Sc +aSs (6b)
in which
C = cosh al S = sinh al
¢ =cosal s = sin al.

The two equations (6a, b) must be solved for the two unknowns A; and L Generally, the
solution would have to be obtained numerically. However, approximations can be ob-
tained which give the interesting features of the solution.

For al < 1 one obtains from (6b)

(@7 + 20 U+ a1+ O((o)Y)]

T = T T B [+ 0 P)] (72)
= 14242052+ ... (7b)
From the first equation (6a) the result is obtained
0= 14204+Qa*+ )P+ ...
which may be inverted to give the width of the edge zone as a function of the load
1= 2 2 42— 12+ 00— 17) (89)

2 8
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The curvature at the edge is
1"(0) = a?[A4Cc + A3Cs~ A,8¢ — A4,Ss]

= 1+a*(p—1)—a*(e* ~ )(p—1)*+0((p - 1)°).

The three terms provide a valid solution for either pressure only slightly in excess of the
yield pressure p~1 <« 1 and/or for a small change in the siope of the moment-curvature
relation |a*—1| < 1. In particular when a = 1, the linear result is obtained n"(0) = p.
The three terms indicate that the curve for p as a function of #"(0) begins with the same
slope as in Fig. 2 at p = 1 but then the slope increases as shown in Fig. 3. The curve for

a* = 2 is computed from (8b).

P=P/P,

(8b)

7" (0)

F1G. 3. Relation between load and edge curvature.

An approximation for the solution for large values of p—1 can be obtained for « > 1.
The second term of the expansion (8a) at least indicates that | becomes small as o or p
become large. Indeed the correct solution is [ = O(a™?) for which (7a) is valid but not (7b),

which is replaced by

1+ (a?)?
245 &
ST @A)
Then (6a) gives A5 &~ — p so that
2y~ [Pl
p+1

and
70~ 1 +oti(1 + As)
~ 1+ a3(p?— 1)

This expression gives the curves of Fig. 3 for «* = 5 and 10.

(9a)

(9b)
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Thus, for a material with little strain hardening past yield, giving a large value of o®,
a pressure load slightly in excess of the incipient yield load causes a relatively large
curvature at the edge. Furthermore (9a) indicates that the width of the yielding zone
remains small as the load is increased. Also note that n(l) = 4; & —p/2 = n(0). Thus the
yield zone is a narrow region of relatively large curvature but of almost constant displace-
ment. A yield zone of similar properties would be expected for, instead of the bilinear
relation Fig. 2, a moment—curvature curve something like that of Fig. 4 for an actual
material.

General moment—curvature relation

A simple solution for the actual material can be obtained from the assumption that
the yield zone is sufficiently narrow ! < 1 so that the displacement in the zone is essentially
constant. The equations are

n” forl £ ¢
M =0, ”{ for) for0s{sL 19
The conditions are
n(0) = —p/2 ~ n(l)
n'() =1
7'(0) = 0.
In the zone | £ {, the solution is
n=e “"Ascos({~ 1)+ A sin({ — )]
where the constants are
As =~ ~p/2
A = “%
from which is obtained
n{) = (p—-1)2
70 = —(p+1)
Fortheyieldzone 0 < { <!
nx —p/2
so that two integrals of the equilibrium equation (10) give
f")y=m=p(=0)>+(p+1)(I-+1 (11)

where the coefficient of the linear term is chosen to make the transverse shear m’ continuous
at { = L A typical curve for m as a function of I—{ is shown by the dashed line in Fig. 4.

So (11) can be easily inverted, at least numerically or graphically, to provide the relation,
for0 (L],

1" = g(l—{)
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F1G. 4. Typical moment-curvature relation.

a typical curve of which is shown in Fig. 5. An integration gives

0
1) =£ g(—0) AL +1/(l)

that is
!

(p—1)/2 = f g(x)dx.

0

3F /gu-g)

£
2r f;g(x)dx=(p—l)/2

o ;\\\ L | ! !

o 05 | £-L

£
Fi1G. 5. Yield zone curvature.

Thus a prescribed value of p, as well as the curve f{x”), determines the curve g(x). Then |,
the length of the yield zone, and the edge curvature are obtained from a single integration.
If  turns out to be small in comparison with unity, then the result should be valid. For the
real material, the constitutive relations become quite complex for the nonlinear range.
However, for the pressure vessel clamped to the rigid ring, the circumferential strain is
zero at the edge and so, should be small in the narrow yield zone. Hence, in this zone the
shell moment-curvature relation Fig. 4 is obtained just as for a beam and will depend on
the local temperature and the interaction with the longitudinal membrane strain N3/ET
which is less than the yield strain and is essentially constant in the edge zone. The inner
surface of the shell wall will reach the failure strain at some value of curvature indicated
by the point x in Fig. 4. If the maximum curvature #"(0) from Fig. 5 is less than the failure
curvature, then the material has sufficient ductility to take the edge bending.
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ABcTpakT—OnNpenesistoTCA PelEHUs 071 TOHKOH 000JI0MKH BpalUEeHHd NPH OJHOBPEMEHHOM [ABJICHMH U
Harpese, U3roTOBAEHHOM U3 HENMHEHHOrO, YNpYroro Martepuana, M 3alleMIEHHO# B XECTKOH KOJbLE.
Hdns obbikHOoBeHHOro ‘‘kpaeBoro 3ddexta’ ucnonbiyorcs npubnumxeHHsie ypasHenus. Mccimenyercs
3aBUCUMOCTb: OUIIHHERHBIM MOMEHT-KpHBU3HA, KOTOPAS YKA3bIBAET YTO MPEXKIE YEM MOABUTCS PAIpyLUCHHE
NaB/IEHHEM, YKa3aHHOE aHA/IM3OM IMpede/ILHOTO COCTOSIHWA, BO3HHKAET MMEIOLIME 3HAYCHHE TEYCHHE B
y3ko#l kpaeBoit 3o0He, 6e3 0ObIKHOBeHHON ‘‘kpaeBoil 30HBI", A MATEPHANIOB CO CNabbiM YIPOMHEHUEM,
YuutbiBas, 470 Takas Kpaesas 30Ha BOOOLLE NOABASAETCA, IOJTYHAETCA APOCTOE PElLEHHE IS IIPOH3IBOILHOMN
NMPEeANUCAKHOM 3aBUCHMOCTH. MOMEHT-KPHBH3IHA, TaKO€ KaK I/ ACKCTBUTEABHOrO MaTepuanta, Koriaa
MPUHUMAETCA BO BHUMAHHUE PEAKUMH C NPOCTLIM HANPKEHHEM. AHAJIM3 MOXHO HCMOJb30BATH AN
pe3epByapoB, U3rOTOBJEHHbIX U3 MAaTEPHANIOB, 0ONAAAIOMX CPeAHel TUIACTHYHOCTBIO, ANA KOTOPBIX
pa3pylueHHe MNOSABIAETCH B paiiohe Kpasi MpH OaBjleHUM peXe, YeM pa3pylleHWe NABJICHHEM LEJIOH
KOHCTPYKLIMH.



